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Abstract

In this paper we introduce and characterize a novel circuit design for low power clock distribution for quantum-

dot cellular automata (QCA) systems. The characterization of the clocking circuitry includes an evaluation of: the

coupling capacitances among the wires and with the ground plane; the dissipative effects of the wires and the substrate;

the phase shift between neighboring wires; and the number of wires driven by the same clock line. The electrical

characteristics of the clocking circuitry are a function of the chosen design parameters. The clock tree is initially

modeled as an RC circuit. A resonant RLC circuit is then proposed, and its power dissipation performance is compared

to an RC circuit as a function of the quality factor Q of the resonating circuit. It is shown that this approach can

greatly reduce the power dissipated in the clocking layer of a QCA circuit.

I. INTRODUCTION

Among the innovative technologies that have been proposed to overcome the limitations of “end of the roadmap”

CMOS, Quantum-dot Cellular Automata (QCA) shows features that are very promising to achieve both high

computational throughput and low power dissipation. The QCA computational paradigm [1] [2] [3] on one hand

introduces highly pipelined architectures with extremely high speeds (in the order of THz) while on the other

hand radically departs from switch based CMOS, avoiding the movement of charge from Vdd to Ground and the

consequent energy dissipation. An operating single cell [4] and a functional logic gate have been demonstrated [5]

using metal dot implementations at cryogenic temperatures. Moreover, recent advances in fabrication of molecular

scale QCA cells suggest the realizability of QCA cells a few nanometers on a side that would allow room temperature

operation.

In addition to having great promise for being small, high speed devices, it has been shown that QCA has great

potential for low power operation. The reversible computation paradigm is particularly well suited to QCA since
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Timler showed that in a clocked, information preserving system, the energy dissipation of the QCA circuit can be

much lower than kBT ln 2 [6].

Details on reversible QCA design strategies are out of the scope of this paper, however very power efficient QCA

circuits will be of little utility without a clock distribution strategy of equal or superior power efficiency.

The goal of this paper is to address the characterization of the clock distribution circuits for QCA and to propose

low power design solutions. While there is a substantial body of work concerning the design of QCA circuits, little

has been done about the design and characterization of the clock distribution circuits. There are many unanswered

questions about the power performance of the clock circuits. This work is the first step toward answering these

questions.

This paper is organized as follows: section 2 introduces the clock distribution strategies for QCA and section 3

provides a model of the capacitances of the clocking circuitry. Section 4 introduces a possible improvement over

a simple RC circuit by including a resonating RLC circuit and section 5 evaluates the power performances of the

resonating clocking distribution under different parameters. Finally section 6 draws the conclusions.

II. OVERVIEW ON CLOCK DISTRIBUTION CIRCUIT FOR QCA

In the early proof of concept [7] work, the clock was explicitly delivered to every cell through metal wires.

This was sufficient for the goals of the experiments, but it has some obvious shortcomings and prohibits large

scale integration. In order to overcome these and to facilitate a shift toward molecular QCA, a clocking scheme

was envisioned that would use a sequence of metal wires buried beneath the QCA layer that would generate an

E-field that would control the tunneling within the QCA layer [8]. By variably controlling the strength of the field

at different points, directionality can be imposed on the QCA circuit. In the typical scheme the wires are divided

into four groups, and each wire is assigned a phased sinusoidal voltage source V (t) = V sin(2πf0t + φi). The

phases of the wires are φi = i · π
2 (i = 0, 1, 2, 3). Note that at least three phases are needed to provide directionality

to the flow of information on the QCA layer.

Figure 1 shows a cartoon view of a possible implementation of the four phased clock distribution for QCA. The

wires are actually on the top of the QCA layer to take advantage of the typical planar process for the metalization.

A ground plane is found on the other side of the QCA layer from the clocking wires in order to terminate the

E-field lines. Four wires (Φ1,Φ2,Φ3,Φ4) carry the four phase shifted signals. The actual distribution on the QCA

layer is obtained through smaller wires branched out from the main carriers.

III. CAPACITIVE COUPLING

The overall capacitive effects on the clocking wires can be considered as the sum of two main contributions:

Ctot = CW + CL

where CW represents the coupling with neighboring wires and CL represents the coupling with the ground plane.

In the following subsections we analyze in detail these two contributions.
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Fig. 1. Possible clock distribution circuitry for QCA

Fig. 2. Cross Section of a generic QCA implementation

A. Capacitive coupling with the neighboring wires

The clock wires experience a capacitive coupling with their neighbors. For a generic wire, the strongest coupling

occurs with the two closest neighbors. The capacitance model between wires (that is usually called Cm) is typically

obtained in VLSI by solving Green’s function with a multipole expansion (as in the FastCap software [9]), by using

a finite difference method to solve the Poisson equation (1Poisson [10]), or by using finite elements (FIERCE [11]).

Since this work is the first one addressing the problem of QCA clocking circuit design, we make the simplifying

assumption that the value of the capacitance is obtained from the simple plane capacitor formula

Cm = ε0ε
w
r ·

Aw

dw

where dw is the distance between two neighbor wires, Aw is the area of the wire exposed to the neighbors and

εwr is relative permittivity of the dielectric between the wires. Future work can address the refinement of the model.

In addition, there is an effect similar to what happens in VLSI when the wires of a bus are affected by crosstalk

[12], the time varying signal on the two neighboring wires affects the total charge Q that needs to be provided
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Fig. 3. Parasitic coupling with neighbor wires

to the target wire to obtain a certain value of V on it. This effect can be modeled with a k multiplicative factor

applied to Cm.

Consider a wire coupled with its two neighbors through the capacitance Cm as shown in Figure 3. The equivalent

capacitance seen on the middle wire can be calculated as follows:

V1(t) = sin(ωt− φ)

V2(t) = sin(ωt)

V3(t) = sin(ωt + φ)

where φ represents the phase shift between neighboring wires.

Further,

Va(t) = V2(t)− V3(t) = −2 sin
φ

2
· cos

(
ωt +

φ

2

)
Vb(t) = V2(t)− V1(t) = 2 sin

φ

2
· cos

(
ωt− φ

2

)
from the definition of capacitance:

Ib(t) = Cm
dVb(t)

dt

Ia(t) = Cm
dVa(t)

dt

and from the Kirkhoff’s Law

I(t) = Ia(t) + Ib(t) = Cm

(
dVa

dt
+

dVb

dt

)
being:

dVa

dt
= 2ω sin

φ

2
sin

(
ωt +

φ

2

)
dVb

dt
= −2ω sin

φ

2
sin

(
ωt− φ

2

)
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Therefore the current is:

I(t) = 2Cmω sin
φ

2

[
sin

(
ωt +

φ

2

)
− sin

(
ωt− φ

2

)]
= 4Cmω sin

φ

2

[
cos(ωt) sin

(
φ

2

)]

The capacitance seen on the middle wire is therefore (from the definition of capacitance)

CW =
I(t)

dV2(t)/dt

where

dV2(t)
dt

= ω cos(ωt)

and therefore finally:

CW = k · Cm = 4 sin2 φ

2
· Cm

B. Capacitive coupling with the ground plane and dissipative effects

As shown in Figure 2, the QCA layer is sandwiched between the clocking wires and the ground plane. The

capacitance through the QCA layer depends on the relative permittivity of the chosen material to implement the

QCA circuits and on its vertical size. Similar to what was seen for CW, a simplifying assumption is made to model

CL as:

CL = ε0ε
q
r ·

Aq

dq

where dq is the distance between the wire and the ground plane, Aq is the area of the wire facing the QCA layer

and εq
r is relative permittivity of the QCA layer.

IV. RESONANT RLC CIRCUIT FOR LOW POWER CLOCK DISTRIBUTION

Consider a simple RC circuit (see fig 4) as the model of the clock distribution where RW represents the overall

resistance of the clocking wire (RW = RW1+RW2, where RW1 is the resistance of the distribution wire with larger

cross-section, RW2 is the resistance of the clocking wire with smaller cross-section), CW represents its capacitance

with its two neighboring wires, and CL and RL represent the capacitance and the dissipative effect with the ground

plane through the dielectric composing the QCA layer. The total capacitance is Ctot = CW + CL, and the power

dissipated per clock period can be calculated as follows.

From the definition of voltage as the energy per unit charge, the energy stored on the ideal capacitor should be

QV = CtotV
2 since all the work done on the charge in moving it from one plate to the other would appear as
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Fig. 4. Model of Clocking with an RC circuit

energy stored. However, since the work done to put a dq charge at a potential V is dU = V dq, the total energy to

put Q charge on the capacitor is

U =
∫ Q

0

V dq =
∫ Q

0

q

Ctot
dq =

Q2

2Ctot
=

CtotV
2

2

This expression shows that just half of the QV = CtotV
2 work appears as energy stored in the capacitor. For a

finite value of RW and assuming that RL is negligible compared to CL, half of the energy supplied by the power

supply for charging the capacitor is dissipated as heat in the resistor, regardless of the size of the resistor. Considering

voltage swing on the supply from 0 to V , then, the energy dissipated on RW in the charge and discharge of the

capacitor Ctot occurring in a period is CtotV
2. Therefore, for a frequency of operation f0, the power dissipated on

the clocking distribution circuit is:

PRC = CtotV
2f0 (1)

Note that this analysis is valid for an abrupt switch of the current on the voltage source (square wave) it could

be demonstrated that if a sinusoidal voltage source is considered then the previous equation should be multiplied

by a factor ≤ 1 [13]. A detailed analysis of the adiabaticity of the voltage supply waveform will not be analyzed

in the following as it does not affect substantially the results of the analysis.

To reduce the power dissipation the distribution of the clock could be done through a resonant parallel RLC

circuit. A resonating circuit has a very limited current drain from the source at its resonating frequency. This has

been studied for low power clock distribution in conventional VLSI [14] [15]. It is useful to compare the power

dissipation of the RC and RLC circuits. We will show that if the resonant circuit has a good quality (measured by

the Q factor) the introduction of the resonant tank improves dramatically the power performances.

Consider the RLC circuit in figure IV. LW represents the inductor introduced to generate the resonant circuit.

As before, the total capacitance is Ctot = CW + CL. The relation between LW and Ctot to obtain resonance is
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Fig. 5. Model of Clocking with an RLC resonating circuit

2πf0LW = 1/(2πf0Ctot). Therefore, the resonant frequency can be obtained by:

f0 =
1

2π
√

LWCtot

(2)

LW can be chosen to tune the value of the parasitic capacitances Ctot. Since at f0 the reactive loads cancel

each other, the current absorbed from the voltage supply flows only through the resistive load. Therefore the power

dissipated at resonance is

PRLC =
V 2

2Rtot
(3)

where Rtot = RW1 + RW2 + RL. To compare this result with the previous for RC in eq. 1 (similar to [14]) we

introduce the definition of quality factor Q as:

Q = 2πf0 ·
Maximum Energy Stored

Average Power Dissipation
(4)

The maximum energy stored in the circuit is the amount of energy resonating between Ctot and LW which can

be expressed as the maximum amount of energy on the capacitance: CtotV
2/2. As shown above average power at

resonance is PRLC = V 2/2Rtot, therefore

Q = 2πf0 ·
CtotV

2/2
V 2/2Rtot

(5)

= 2πf0 ·RtotCtot
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From 6 and 3

PRLC =
πCtotf0V

2

Q

The ratio between PRLC and PRC is therefore:

PRLC

PRC
=

πCtotV
2f0

Q
· 1
CtotV 2f0

=
π

Q
(6)

Therefore, if Q ≥ π the RLC resonating circuit is dissipating less power than the RC.

A. Parallel load effect

Previously we considered that the voltage supply is connected to a single clocking wire, however, for real clocking

of QCA circuits, the same voltage supply will most likely be connected to several (n) parallel clocking wires as

shown in Figure 1. In this section we will introduce n as a parameter for the evaluation of the quality of the

resonator. The introduction of n parallel loads will obviously affect both Rtot and Ctot yielding new values of

R′
tot = RW1 + RW2

n + RL
n and C ′

tot = n · CL.

The parallel effect of the load equally effects CL and RL. The partition of current on them, then, remains the

same. Therefore, the equation (1) for the RC circuit with n parallel wires is only slightly modified to:

P ′
RC ≥ n · CtotV

2f0

whereas for the resonant RLC circuit we have:

P ′
RLC =

V 2

2R′
tot

= n · πCtotf0V
2

Q
(7)

where R′
tot = RW1 + RW2 + RL. The increase of n scales the power stored in the clocking circuit by the same

factor. Therefore the ratio of PRLC and PRC assumes the same expression of equation 6 and using n parallel wires

does not affect the condition Q ≥ π for the quality factor of the resonating circuit.

Finally, to maintain the target resonating frequency f0 the scaling of Ctot by n must be balanced by a symmetric

scaling of LW, therefore L′
W = LW

n .

V. EVALUATIONS

In this section we evaluate the power dissipation per unit area (Pd measured in W/cm2) of a possible layout

for clock distribution. The power dissipation per square centimeter is compared to the typical limit of 100 W/cm2

that represents a critical limit for the capability of heat dissipation in VLSI. The considered QCA implementation

is based on quantum fortresses and the dimensions involved in the computation of the parameters are summarized

in figure 6. Moreover, parameters reported in table V are chosen according to the geometric rules defined in [8]

and are shown in figure 7: the geometric constant a = 220 nm is such that each QCA cell is clocked by a single

wire.
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Fig. 6. Crossectional diagram of a quantum fortress type QCA chip

Fig. 7. Geometric constants according to [8]

First, consider the effect of the Q of the RLC resonator has on the power dissipation of the circuit for a range of

frequencies (figure V). Notice that for Q=1, there is effectively no resonance, and PRLC = PRC. As Q increases,

there is a substantial decrease in power consumption. Notice, too, that the intersection with the 100 W/cm2 line

occurs at higher frequencies as the Q increases. Note that the plots assume that for each frequency the tuning LW

is set to allow resonance at that specific frequency.

The plot also shows also a Q* value of about 300 that is obtained by the given geometry and parameters reported

in Table V and therefore represents the actual Q for the chosen geometries.

It is also important to look at the power dissipation for a given frequency (e.g. 1 GHz) and varying supply

voltages. As can be seen in figure V, for a resonating RLC circuit with a quality factor of Q* the circuit can be

driven with a voltage up to 20 V without hitting the limit of power dissipation 100 W/cm2. This result provides

a valuable degree of flexibility since at the moment it is unknown what driving voltage will be required to obtain

the switching of the quantum fortress based QCA cells from the locked to the relaxed state.

Finally we analyze the impact of the phase shift between neighboring wires on the power consumption. Figure

V shows the impact of a reduced phase shift between neighboring wires given a frequency of 1 GHz and a supply
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Fig. 8. Pd as a function of frequency for different values of Q. In red: 100W/cm2 limit

Fig. 9. Pd as a function of supply voltage for different values of Q at f = 1 GHz. In red: 100 W/cm2 limit
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TABLE I

PHYSICAL PARAMETERS

Parameter Value Unit Description

a 2.20E-07 m geometric constant

L 1.00E-02 m length of a wire

h 3.00E-08 m height of a wire

w 3.00E-08 m width of a wire

∆ 2.20E-07 m pitch between wires

d 2.05E-07 m distance between wires (Delta-w/2)

Aq 3.00E-10 m2 Area facing the QCA layer

Aw 3.00E-10 m2 Area facing the other wires

S 9.00E-16 m2 Area of the section

ρ(Cu) 1.7E-08 ohm*m resistivity of the wire

ρ (Si) 6.40E+02 ohm*m resistivity of intrinsic Silicon

ρ (P doped Si) 1.00E-05 ohm*m resistivity of P doped Silicon

εr(SiGe) 1.41E+01 relative permittivity of Silicon Germanium alloy

εr(Si) 11.68 relative permittivity of Silicon (also doped)

ε0 8.85E-12 m−3kg−1s4A2 permittivity of free space

V1 13 V Source voltage amplitude

φ 1.570796 radiant phase shift between adjacent wires

d1 2.93E-07 m thickness layer 1

dq 2.44E-08 m thickness QCA layer

d2 2.44E-08 m thickness layer

ds 2.44E-08 m thickness of substrate

voltage of 1 V.

From V it can be seen that for V1 = 1 V the RC circuit dissipates less than 100 W/cm2.

Finally in figure V we analyze the effect of a reduced phase shift between neighboring wires on the power

consumption for f = 1 GHz and V1 = 1 V It can be seen with a φ < π/2 the power dissipation can be reduced

under the limit of 100 W/cm2 without a resonating circuit. This effect is due to the reduced capacitive load seen

throughout the clocking circuitry and provides an extra parameter to reduce the power dissipation in a QCA clocking

circuit when an RLC circuit is not used.

VI. CONCLUSION

This paper has addressed the characterization of the clock distribution circuits for QCA. While there is a substantial

body of literature on QCA circuit design, little has been said about the clock distribution circuits required to make

the QCA circuits operable. This paper has provided an electrical characterization of the parameters involved in the

clocking circuitry and compared two approaches to implementing the clocking circuitry: a simple RC circuit and

an improved resonating RLC circuit.
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TABLE II

CIRCUIT PARAMETERS

Circuit Parameter Value Unit Description

C0 8.55932E-14 F Capacitance with the substrate

k(phi) 2 multiplicative factor

Cm 1.30E-14 F Capacitance with adjacent wire

Ctot 1.12E-13 F Total Capacitance

Rw 1.89E+05 Ohm Resistance of a wire

Rl 7.30E+05 Ohm Parasitic Resistance of the QCA layers

Rtot 9.19E+05 Ohm Total resistance

Fig. 10. Pd as a function of φ at f = 1 GHz and V1 = 1 V. In red: 100 W/cm2 limit

The analysis of the RLC circuit shows that it reduces power consumption below that possible with the RC allowing

the clocking circuit to operate at higher computational frequencies while dissipating less than 100 W/cm2.
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